ZJ Composites deck safe
Links
Results and discussion
In addition to its use in paints and coatings, TiO2 powder is also used in the production of plastics, inks, and ceramics. It is valued for its ability to impart whiteness and brightness to these materials, as well as its UV-blocking properties. TiO2 powder suppliers play a crucial role in providing these industries with the high-quality TiO2 powder they need to produce their products.
For a substance that is relatively unknown to the public, it’s amazing how many everyday products TiO2 can be found in. Because of its many varied properties, our skin, cities, cars, homes, food and environment are made brighter, safer, more resilient and cleaner by TiO2. With a legacy of 100 years of safe commercial use, TiO2 is only going to become more vital as our environment faces greater challenges from a growing population.

Why does the exposure route matter, and what's the risk?
Titanium Dioxide Raw Material Tio2 Powder
Because of their small size, nanoparticles may have unique physical and chemical properties. These properties may cause them to interact with living systems differently than larger materials with the same chemical composition (also known as bulk materials).
Of the two methods of extraction, the sulphate process is currently the most popular method of producing TiO2 in the European Union, accounting for 70 percent of European sources. The remaining 30 percent is the result of the chloride process. On a global level, it is estimated about 40-45 percent of the world’s production is based on the chloride process.
Lithopone was discovered in the 1870s by DuPont. It was manufactured by Krebs Pigments and Chemical Company and other companies.[2] The material came in different seals, which varied in the content of zinc sulfide. Gold seal and Bronze seals contain 40-50% zinc sulfide, offering more hiding power and strength.[3] Although its popularity peaked around 1920, approximately 223,352 tons were produced in 1990. It is mainly used in paints, putty, and in plastics.[1]
Lithopone
Titanium dioxide is the most widely used whitening pigment in the world and has been linked to adverse health effects, particularly genotoxicity and intestinal inflammation. It is applied as food coloring and a whitening agent to a wide variety of foods, including chewing gum, cakes, candies, breads and ice cream.
The lack of clear regulations and controls explains that P25TiO2NPs are still found in many of the commercialized sunscreens in the market. Some of them are coated to reduce the photoactivity of the anatase form, which is known to be responsible for tissue damage, but not enough studies were made on these coated forms. The anatase photoactivity could trigger the production of reactive oxygen species (ROS) generation, as it was stated before. The ROS are chemically reactive species containing oxygen, such as peroxides, superoxide, hydroxyl radical, and singlet oxygen. They are regularly produced in the biological milieu and counterbalanced by physiological antioxidant defense mechanisms. However, an abrupt increase of ROS may result in non-reversible damage to the skin cells. The effects of coated and uncoated P25TiO2NPs need therefore to be studied, and articles on this topic present different conclusions. [11], [12], [13] Recent literature on this topic found that TiO2NPs inhalation provokes serious genotoxicity and DNA damage [14], [15], [16], [17]. On the other hand, some studies in rats have reported no significant harm to genetic material [18], [19], [20], [21], [22].
Recent policy changes in regard to titanium dioxide
At the present JECFA meeting, the committee considered additional toxicological studies relevant to the safety assessment of the chemical that investigated its toxicokinetics, acute toxicity, short-term toxicity, long-term toxicity and carcinogenicity, genotoxicity, and reproductive and developmental toxicity, as well as special studies addressing its short-term initiation/promotion potential for colon cancer. The experts acknowledged that a large number of toxicological studies have been conducted using test materials, including nanoparticles, having size distributions and physico-chemical properties not comparable to real-world uses of titanium dioxide as a food additive. The studies on non-representative materials were evaluated by JECFA, but the committee concluded that such studies are not relevant to the safety assessment of the additive.
≤14