ZJ Composites fiberglass grating panels
Links
-
Titanium dioxide comes in the form of a white powder and is sometimes used in cosmetics to adjust a color to a lighter shade. This is also why it can produce a white cast.
- The wholesale classification of calcium carbonate typically includes four main grades pharmaceutical grade, food grade, industrial grade, and agriculture grade. Each grade has specific characteristics and applications that make it suitable for different industries.
- Titanium dioxide (TiO2) is a naturally occurring compound that has been widely used in various industries due to its unique properties. In the cosmetics industry, TiO2 is primarily used as a pigment and sunscreen agent. This article aims to provide a comprehensive guide to understanding the role of TiO2 in cosmetics, including its benefits, safety concerns, and regulations.
- Manufacturers of white titanium dioxide pigment play a critical role in ensuring product quality and consistency. They employ cutting-edge technology to refine the pigment's particle size and shape, crucial factors that determine its performance in end products They employ cutting-edge technology to refine the pigment's particle size and shape, crucial factors that determine its performance in end products
They employ cutting-edge technology to refine the pigment's particle size and shape, crucial factors that determine its performance in end products They employ cutting-edge technology to refine the pigment's particle size and shape, crucial factors that determine its performance in end products
white titanium dioxide pigment manufacturers. Advanced techniques such as chlorination or sulfate processes are used, each with its own set of advantages and challenges. The chlorination process, for instance, yields high-purity TiO2 but involves more complex and costly procedures.
-
The conventional surface treatment methods of titanium alloy include glow discharge plasma deposition, oxygen ion implantation, hydrogen peroxide treatment, thermal oxidation, sol-gel method, anodic oxidation, microarc oxidation, laser alloying, and pulsed laser deposition. These methods have different characteristics and are applied in different fields. Glow discharge plasma deposition can get a clean surface, and the thickness of the oxide film obtained is 2 nm to 150 nm [2–8]. The oxide film obtained from oxygen ion implantation is thicker, about several microns [9–14]. Hydrogen peroxide treatment of titanium alloy surface is a process of chemical dissolution and oxidation [15, 16]. The dense part of the oxide film is less than 5 nm [17–21]. The oxide film generated from the thermal oxidation method has a porous structure, and its thickness is commonly about 10-20 μm [22–25]. The oxide film from the sol-gel method is rich in Ti-OH, a composition that could induce apatite nucleation and improve the combining of implants and bone. It has a thickness of less than 10 μm [26–28]. Applied with the anodic oxidation method, the surface can generate a porous oxide film of 10 μm to 20 μm thickness [29–31]. Similarly, the oxide film generated from the microarc oxidation method is also porous and has a thickness of 10 μm to 20 μm [32, 33].
-
Is titanium dioxide illegal in other countries?
-
40 -
- Expert Manufacturers of 30-50nm TiO2 Powders Pioneers in Nanotechnology
Background and overview
Globally, Iron Oxide is the second largest inorganic pigment after Titanium Dioxide and the first largest color inorganic pigment. Iron oxide pigments mainly include iron oxide red, yellow, black and brown with iron oxide as the basic material. Iron oxide yellow, also known as hydroxyl iron oxide (FeOOH), will be dehydrated and decomposed into red at about 177 ℃, so the application of ordinary iron yellow pigment in high-temperature occasions such as plastic processing and baking coatings is limited. Iron oxide yellow pigment can improve its temperature resistance through surface coating, so as to expand the application field of iron oxide yellow pigment.
The chemical formula of iron oxide yellow (also known as hydroxyl iron) is α- Fe2O3 · H2O or α- FeOOH, with needle like structure and yellow powder, is a kind of particle size less than 0.1 μ m. Iron series pigment with good dispersibility in transparent medium has strong coloring power, high covering power, insoluble in alkali and slightly soluble in ACID. Synthetic iron oxide yellow has the characteristics of light resistance, good dispersion, non-toxic, tasteless and difficult to be absorbed by human body. It is widely used in coatings, plastics, ink and pharmaceutical industry.
Physical and chemical properties and structure
1. Iron oxide yellow pigment has acid and alkali resistance, resistance to general weak and dilute acids, and is very stable in alkaline solution of any concentration.
2. Iron oxide yellow pigment has certain light resistance, heat resistance and weather resistance. Its coating color is durable and can keep the coating from being damaged in light. Iron oxide yellow pigment is stable in a certain temperature range, but beyond the limit temperature, its color begins to change, and the degree of change is more significant with the increase of temperature. Iron oxide yellow pigment is not affected by cold, heat, dry and wet weather conditions.
3. Iron oxide yellow pigment is very stable in any ambient atmosphere (such as gases containing H 2S, Co, so 2, HCl, no, etc.). And resistant to pollution, water, oil and solvent penetration, insoluble in water, mineral oil or vegetable oil.
4. Iron oxide yellow pigment has strong coloring power and high hiding power. With the decrease of pigment particle size, its coloring power is stronger.
application
Nano iron oxide yellow has the characteristics of acid resistance, alkali resistance, non toxicity and low price. It is widely used in coatings, plastics and rubber. The particle size of nano iron yellow is less than 100 nm, which makes it have some unique characteristics. When light shines on its surface, transmission and diffraction will occur, showing transparent yellow, and can strongly absorb ultraviolet rays, Therefore, it can be used as a functional pigment for the surface paint of high-grade cars, precision instruments, bicycles, motorcycles, cosmetics, food, drugs and other coloring additives.
As an professional Lithopone factory, Jinan Hongquan Titanium Industry Co., Ltd is located in Jinan, a beautiful spring city. The company’s scientific research personnel sincerely cooperate with well-known domestic universities and various titanium dioxide production enterprises to study and produce active Lithopone with great concentration. Some of its products have been widely used in chemical, textile, paper, plastic, paint and other production fields.
2. Hazard identification The MSDS should outline any potential hazards associated with the handling and use of lithopone. This includes information on the physical and chemical properties of the product, as well as any potential health hazards or environmental risks.

zinc oxide content, %

On November 23, 2022, the General Court of the European Union reversed the conclusion that titanium dioxide was carcinogenic and released a statement (1,2):
“First, the Commission made a manifest error in its assessment of the reliability and acceptability of the study on which the classification was based and, second, it infringed the criterion according to which that classification can relate only to a substance that has the intrinsic property to cause cancer.”
As part of our mission at CRIS we base our safety assessments on the currently available scientific evidence and consider many variables (e.g., study quality, journal of publication, etc.), even if it goes against previous conclusions. Evidence-informed decisions making is critical to ensure that the laws and regulations put into place are for the benefit of the population.
The EU General Court maintains that the scientific evidence presented wasn’t the complete picture for the ingredient, “in the present case, the requirement to base the classification of a carcinogenic substance on reliable and acceptable studies was not satisfied.”
However, humans are not exposed to E171 in drinking water at any significant quantity over a long duration, so this potential effect is irrelevant to the human experience. It’s important to understand that a potential hazard is not the same thing as an actual risk.
Professor Thomas Faunce spoke out about the rise in auto-immune diseases & childhood autism in relation to the rise of nano-particles in our child food supply. The full article can be found here.
But a chemical’s safety when it’s used externally is not always the same as when it’s ingested. Different uses of the same ingredient may cause very different health outcomes.