ZJ Composites moulded fibreglass grating
Links
-
SYNONYMES (LISTE NON EXHAUSTIVE)
-
The skin of an adult person is, in most places, covered with a relatively thick (∼10 μm) barrier of keratinised dead cells. One of the main questions is still whether TiO2 NPs are able to penetrate into the deeper layers of the skin. The majority of studies suggest that TiO2 NPs, neither uncoated nor coated (SiO2, Al2O3 and SiO2/Al2O3) of different crystalline structures, penetrate normal animal or human skin. However, in most of these studies the exposures were short term (up to 48 h); only few long-term or repeated exposure studies have been published. Wu et al.83 have shown that dermal application of nano-TiO2 of different crystal structures and sizes (4–90 nm) to pig ears for 30 days did not result in penetration of NPs beyond deep epidermis. On the other hand, in the same study the authors reported dermal penetration of TiO2 NPs with subsequent appearance of lesions in multiple organs in hairless mice, that were dermal exposed to nano-TiO2 for 60 days. However, the relevance of this study for human exposure is not conclusive because hairless mice skin has abnormal hair follicles, and mice stratum corneum has higher lipid content than human stratum corneum, which may contribute to different penetration. Recently Sadrieh et al. performed a 4 week dermal exposure to three different TiO2 particles (uncoated submicron-sized, uncoated nano-sized and coated nano-sized) in 5 % sunscreen formulation with minipigs. They found elevated titanium levels in epidermis, dermis and in inguinal lymph nodes, but not in precapsular and submandibular lymph nodes and in liver. With the energy dispersive X-ray spectrometry and transmission electron microscopy (TEM) analysis the authors confirmed presence of few TiO2 particles in dermis and calculated that uncoated nano-sized TiO2 particles observed in dermis represented only 0.00008 % of the total applied amount of TiO2 particles. Based on the same assumptions used by the authors in their calculations it can be calculated that the total number of particles applied was 1.8 × 1013 /cm2 and of these 1.4 x107/cm2 penetrated. The surface area of skin in humans is around 1.8 m2 and for sun protection the cream is applied over whole body, which would mean that 4 week usage of such cream with 5 % TiO2 would result in penetration of totally 2.6 × 1010 particles. Although Sadrieh et al.concluded that there was no significant penetration of TiO2 NPs through intact normal epidermis, the results are not completely confirmative.
-
Example of partial substitution of titanium dioxide with lithopone supplier 30% in a liquid paint.
Australian researchers examined how titanium dioxide as a food additive affected gut microbiota in mice by orally administering it in drinking water. The study, published in the journal Frontiers in Nutrition in 2019, found the treatment could “alter the release of bacterial metabolites in vivo and affect the spatial distribution of commensal bacteria in vitro by promoting biofilm formation. We also found reduced expression of the colonic mucin 2 gene, a key component of the intestinal mucus layer, and increased expression of the beta defensin gene, indicating that titanium dioxide significantly impacts gut homeostasis.” The changes were then linked to colonic inflammation, along with a higher expression of inflammatory cytokines, which are signal proteins that help with regulation. The researchers concluded that titanium dioxide “impairs gut homeostasis which may in turn prime the host for disease development.”
Titanium dioxide, also called titania, is an odorless white powder and naturally occurring mineral that is widely used as a pigment for its brightness and whitening effects on a variety of materials, such as paint, plastic, paper, cosmetics, sunscreens, toothpastes and foods.
New Safety Rulings & Regulations
In 2022, a year after the EFSA recommended against the use of E171, the Food Standards Australia New Zealand (FSANZ) conducted its own reassessment of titanium dioxide as a food additive. The agency concluded that titanium dioxide was indeed safe to use as a food additive. The United Kingdom and Canada came to similar conclusions.
After oral ingestion, the absorption of titanium dioxide particles is low, however they can accumulate in the body, Maged Younes, chair of the European Food Safety Authority's expert Panel on Food Additives and Flavourings, said in a May 2021 statement.


Having thus described the origin and uses of the pigment, we now come to the question, what is lithopone? It is, in short, a chemical compound usually consisting of 30.5 per cent zinc sulphide, 1.5 per cent zinc oxide and 68 per cent barium sulphate, but these proportions vary slightly in the different makes. Lithopone of this composition is sold as the highest grade, either as red seal or green seal, as it best suits the idea of the manufacturer. Many manufacturers, especially in Europe, sell and also export other brands under other seals, containing 24, 20, 18 and as little as 12 per cent of zinc sulphide with very small percentages of zinc oxide, the balance being usually barium sulphate, but sometimes certain portions of China clay or gypsum (calcium sulphate) or whiting (calcium carbonate). Such brands are not a chemical compound, but mechanical mixtures of the chemically compounded lithopone and the admixtures referred to.

In food, titanium dioxide is often used as an artificial color additive. Tasha Stoiber, senior scientist at the consumer health nonprofit Environmental Working Group, says titanium dioxide can generally be thought of as a paint primer – it often goes on a hard-shelled candy like Skittles before the color is added to give it a uniform shine.
The reaction liquid is filtered through plate and frame pressure to obtain lithopone in the form of a filter cake with a moisture content of no more than 45%. It is then roasted in a drying furnace to change the crystal form of lithopone, and is then pickled with sulfuric acid at a temperature of 80°C. Finally, it is washed with water, reinforced with colorants, filtered, dried and ground into powder.
We even use titanium dioxide when brushing our teeth as it’s found in many toothpastes.

Scattering Efficiency

It’s also used in food products to provide a white color. Candies, cakes and creamers are examples of foods that may contain titanium dioxide for its color enhancing and bleaching properties.

In Home Care products, the presence of titanium dioxide is declared in line with local regulations, which can vary across the world. In some countries, titanium dioxide is not declared if only a small amount of the ingredient is used. In other countries titanium dioxide is grouped under ‘colourants’ in the ingredients list. In Europe, regulation requires all home care ingredients to be disclosed through a supporting website. You can find our product ingredient information page by visiting ‘
CAS NO. :